A Dodecalogue of Basic Didactics from Applications of Abstract Differential Geometry to Quantum Gravity

نویسنده

  • Ioannis Raptis
چکیده

We summarize the twelve most important in our view novel concepts that have arisen, based on results that have been obtained, from various applications of Abstract Differential Geometry (ADG) to Quantum Gravity (QG). The present document may be used as a concise, yet informal, discursive and peripatetic conceptual guide-cum-terminological glossary to the voluminous technical research literature on the subject. In a bonus section at the end, we dwell on the significance of introducing new conceptual terminology in future QG research by means of ‘poetic language’. PACS numbers: 04.60.-m, 04.20.Gz, 04.20.-q

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loop Quantum Gravity and Black Hole Physics

I summarize the basic ideas and formalism of loop quantum gravity. I illustrate the results on the discrete aspects of quantum geometry and two applications of these results to black hole physics. In particular, I discuss in detail the derivation of the Bekenstein-Hawking formula for the entropy of a black hole from first principles.

متن کامل

Loop Quantum Gravity and Black Hole

I summarize the basic ideas and formalism of loop quantum gravity. I illustrate the results on the discrete aspects of quantum geometry and two applications of these results to black hole physics. In particular, I discuss in detail the derivation of the Bekenstein-Hawking formula for the entropy of a black hole from rst principles.

متن کامل

Loop Quantum Gravity and Black

I summarize the basic ideas and formalism of loop quantum gravity. I illustrate the results on the discrete aspects of quantum geometry and two applications of these results to black hole physics. In particular, I discuss in detail the derivation of the Bekenstein-Hawking formula for the entropy of a black hole from rst principles.

متن کامل

Quantitative Structure-Property Relationship to Predict Quantum Properties of Monocarboxylic Acids By using Topological Indices

Abstract. Topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is a delightful playground for the exploration of proof techniques in Discrete Mathematics and its results have applications in many areas of sciences. A graph is a ...

متن کامل

Hermitian metric on quantum spheres

The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008